ARTICLE IN PRESS

Science Bulletin xxx (xxxx) xxx

Contents lists available at ScienceDirect

Science Bulletin

journal homepage: www.elsevier.com/locate/scib

Short Communication

Twisted pore aperture of MOF induced three-dimensional restricted sieving separation for CO_2 and C_2H_2 mixtures

Hejin Zhu^{a,c,1}, Wenjuan Xue^{a,b,1}, Hongliang Huang^{a,b,*}, Zefeng Jiang^{a,c}, Mingze Zheng^{a,c}, Chongli Zhong^{a,b,*}

^a State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong Universiy, Tianjin 300387, China ^b School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China School of Material Science and Engineering, Tiangong University, Tianjin 200287, China

^c School of Material Science and Engineering, Tiangong University, Tianjin 300387, China

ARTICLE INFO

Article history: Received 1 May 2023 Received in revised form 18 July 2023 Accepted 24 August 2023 Available online xxxx

© 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

Acetylene (C_2H_2) is one of the most important chemical raw materials and is widely used as a feedstock for the production of various fine chemicals and electronic materials [1]. In industry, C_2H_2 is mainly produced through partial methane combustion and thermal hydrocarbon cracking [2], which is always accompanied by a low concentration of carbon dioxide (CO_2) impurity, causing negative effects on follow-up utilization. Therefore, the separation of C_2H_2 and CO_2 is crucial for C_2H_2 purification. Compared to the traditional highly energy-intensive solvent extraction and low-temperature distillation separation methods, the adsorptive separation based on porous materials is a promising alternative technology [3,4]. However, the separation of CO_2/C_2H_2 is scientifically challenging due to their similar physical and chemical properties (Table S1 online) [5].

Molecular-sieving separation is considered as an ideal way for adsorption separation since it can afford the theoretically infinite selectivity and high separation efficiency. Metal–organic frameworks (MOFs) are excellent porous mediums to achieve molecular-sieving effects for specific gas mixtures, due to their structural diversity, and adjustable structure [6]. Actually, a series of molecular-sieving MOF adsorbents have been developed for light hydrocarbon purification based on the differences in cross-sectional areas of target molecules (Table S2 online), namely the two-dimensional (2D) restricted mechanism. The complexity of different gas separations can be classified by the molecular kinetic diameter differences [7], as shown in Fig. 1a. However, for the CO₂/ C_2H_2 separation, due to the same kinetic diameter (3.3 Å) and very close cross-sectional areas (3.2 Å × 3.3 Å for CO₂ and 3.3 Å × 3.3 Å for C₂H₂) (Fig. 1b and Table S1 online), molecular-sieving separation

¹ These authors contributed equally to this work.

tion of CO_2/C_2H_2 by the traditional 2D restricted mechanism is considered impractical [8–11]. In spite of this, the difference in their three-dimensional (3D) sizes (CO₂, 3.2 Å \times 3.3 Å \times 5.4 Å; C₂H₂, 3. $3 \text{ Å} \times 3.3 \text{ Å} \times 5.7 \text{ Å}$) still provides a narrow window of opportunity to achieve ideal molecular-sieving separation of CO₂ and C₂H₂ via 3D restricted effect (Fig. 1b and c). Specifically speaking, linear C_2H_2 with longer molecular size will be significantly restricted in the twisted pore aperture MOF compared with shorter CO₂ molecule, and the 3D restricting effect can lead to a molecular-sieving effect for target molecules with nearly identical cross-sectional areas but different molecular lengths (Fig. 1d and e). However, 3D restricted sieving based on the length difference of linear molecules with nearly identical cross-sectional areas has not been reported. Therefore, we propose 3D restricted sieving strategy by constructing twisted pore aperture in MOF for molecular-sieving separation (Fig. 1e), which can provide a new routine for highly efficient separation of some challenging separation systems.

As a proof-of-concept experiment, two cheap and robust isostructural M-Trz (Trz = 1,2,4-triazole) MOFs with twisted pore aperture, namely Ni-Trz and Cu-Trz, were employed for CO_2/C_2H_2 separation. Ni-Trz with relatively wider aperture size undergoes co-adsorption of CO_2 and C_2H_2 , while Cu-Trz with slightly narrower aperture size shows efficient CO_2 adsorption and selective molecular exclusion for C_2H_2 .

The two isostructural MOFs, Ni-Trz and Cu-Trz, were synthesized by hydrothermal method [12,13]. Powder X-ray diffraction (PXRD) patterns confirmed the phase purity of Ni-Trz and Cu-Trz (Fig. S1 online). The trinuclear metal clusters are interlinked by the Trz ligands, generating rigid narrow channels (Fig. 1f). It should be noted that the narrow aperture of the M-Trz MOF contains six hydrogen atoms, which are divided into two layers due to the different orientation of the C–H bond, and hydrogen atoms in the two layers are arranged in the vertex of two twisted triangles, resulting in a twisted pore aperture (Fig. 1g). In addition, the precise control

https://doi.org/10.1016/j.scib.2023.09.008

2095-9273/© 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

Please cite this article as: H. Zhu, W. Xue, H. Huang et al., Twisted pore aperture of MOF induced three-dimensional restricted sieving separation for CO₂ and C₂H₂ mixtures, Science Bulletin, https://doi.org/10.1016/j.scib.2023.09.008

^{*} Corresponding authors.

E-mail addresses: huanghongliang@tiangong.edu.cn (H. Huang), zhongchongli@ tiangong.edu.cn (C. Zhong).

Science Bulletin xxx (xxxx) xxx

Fig. 1. Twisted pore aperture of MOF induced 3D restricted molecular-sieving mechanism for CO_2/C_2H_2 separation. (a) The complexity of different gas separations classified by the molecular kinetic diameter differences. (b) The molecular dimensions of CO_2 and C_2H_2 . (c) The comparison of traditional 2D restricted molecular-sieving mechanism and the proposed 3D restricted molecular-sieving mechanism (d, e) Schematic diagram of the 3D restricted molecular-sieving mechanism induced by the twisted pore aperture for CO_2/C_2H_2 separation. (f, g) The Connolly surface structure of Cu-Trz MOF and its twisted pore aperture.

of aperture size at 0.1 Å scale via a judicious choice of ligand alone is challenging since traditional ligand expansion and functional group modification can only change the pore size at nanometer or angstrom scale with a large gap. Herein, the additional regulation on the aperture size of the twisted pore in M-Trz MOFs was achieved by modulating the coordination bond length of M-Trz MOFs. The coordination bond length of the Cu–N bond in Cu-Trz is 1.96 Å while it is 1.98 Å for Ni–N bond in Ni-Trz. As expected, the size of the coplanar M₃O based fragments in the isostructural MOFs successfully inherits this subtle difference, which can result in a regulation of twisted pore aperture (Fig. S2 online). Since M-Trz has twisted pore aperture, the linear molecules with different lengths will be subject to different restricting effects during the mass transfer process, which we believe is promising for the 3D restricting molecular-sieving separation of CO₂/C₂H₂ mixtures.

Motivated by the 3D restricting molecular-sieving effect, singlecomponent adsorption isotherms of CO_2 and C_2H_2 in M-Trz were measured at ambient conditions. Fig. 2a shows that both CO_2 and C_2H_2 can be well adsorbed by Ni-Trz. Interestingly, for the case of Cu-Trz, a negligible uptake amount of C_2H_2 was observed under the same conditions, while CO_2 could still enter the channel freely (Fig. 2b). Similar results were also observed even at 273 and 190 K (Figs. S3, S4 online), which excludes the possible thermodynamic separation based on the difference in gas affinity. This opposite adsorption result shows that the width of the twisted pore aperture is also important for the 3D restricted molecular-sieving separation, and too wide aperture size will lead to the co-adsorption phenomenon. Notably, Cu-Trz only has a C₂H₂ adsorption capacity of 1.1 cm³ g⁻¹ at 100 kPa and 298 K, which is a record lower than previously reported benchmark MOFs (Fig. S5 and Table S3 online). The negligible uptake amount of N₂, CH₄, C₂H₄, and C₂H₆ as well as the high H₂O uptake further suggest that Cu-Trz can exclude larger molecules than C_2H_2 , while it can adsorb molecules smaller than CO₂ (Figs. S6–S9 online). Besides, the results of in situ XRD tests of Cu-Trz in the CO₂ adsorption show that the XRD patterns nearly kept consistent from vacuum to low pressure and up to 100 kPa (Fig. S10 online). This indicates that the Cu-Trz has excellent structural rigidity during CO₂ adsorption, which rules out the possible framework flexible-induced sieving behavior [14].

To further verify the distinct adsorption behaviors of C_2H_2 and CO_2 on the two isostructural MOFs, the kinetic adsorption properties of Ni-Trz and Cu-Trz were investigated using the timedependent adsorption curves of C_2H_2 and CO_2 (Fig. S11 online). For Ni-Trz, both CO_2 and C_2H_2 were quickly adsorbed and the

Science Bulletin xxx (xxxx) xxx

Fig. 2. Gas adsorption properties of M-Trz and First-principle density functional theory (DFT) calculated CO_2 and C_2H_2 diffusion and CO_2 adsorption in Cu-Trz. (a) Adsorption isotherms of CO_2 and C_2H_2 at 298 K for Ni-Trz. (b) Adsorption isotherms of CO_2 and C_2H_2 at 298 K for Cu-Trz. (c) Time-dependent gas uptake profiles of CO_2 and C_2H_2 for Cu-Trz at 298 K. (d) Three cycles of dynamic column breakthrough curves of CO_2/C_2H_2 separation on Cu-Trz. (e) Schematic diagram of CO_2 and C_2H_2 molecular diffusion through the twisted pore aperture of Cu-Trz. (f) The DFT calculated gas diffusion energy barrier associated with the CO_2 and C_2H_2 transport in twisted pore aperture. (g) Optimized geometry for the CO_2 interactions in Cu-Trz MOF. (h) The independent gradient mode (IGM) analysis for CO_2 adsorption in Cu-Trz, where the green isosurface denotes the weak vdW-type interactions (color codes for the contribution of individual atoms on intermolecular interactions: red atoms represent large contributions, green atoms express moderate contributions, and blue atoms show the negligible contributions).

 CO_2 possesses a faster adsorption rate than that of C_2H_2 for its small molecular length. For Cu-Trz, CO₂ was immediately adsorbed until equilibrium, while the adsorption of C₂H₂ remained negligible even after 130 min (Fig. 2c). Moreover, the diffusional time constants of Cu-Trz for C_2H_2 and CO_2 were calculated to be $2.374~\times~10^{-7}$ and $6.423~\times~10^{-3}~min^{-1}$ based on the timedependent adsorption curves (Fig. S12 and Table S4 online), respectively. This further indicates the molecular-sieving effect of Cu-Trz in dynamic adsorption and rules out the possibility of slow C₂H₂ adsorption. Meanwhile, the heats of adsorption of M-Trz were calculated by the adsorption isotherms of 298 and 323 K, and the adsorption heat of CO₂ at zero coverage in Cu-Trz is 53 kJ mol⁻¹ (Figs. S13–S15 online), implying the strong CO₂ affinity of Cu-Trz. As for Ni-Trz (Figs. S16–S19 online), the adsorption heat of C₂H₂ at zero coverage is 60 kJ mol⁻¹, which is higher than that of CO_2 (40 kJ mol⁻¹, Fig. S20 online). To evaluate the actual CO_2 and C₂H₂ mixture separation performance of Cu-Trz MOFs, breakthrough experiments of CO₂/C₂H₂ (50:50, v:v) gas mixture were carried out at 298 K (Fig. S21 online). It can be found that the CO_2/C_2H_2 gas mixture can be efficiently separated by Cu-Trz. In addition, the prices of Trz ligand and metal salt of Cu-Trz are very

cheap among the reported CO_2 -selective MOF adsorbents (Fig. S22 and Tables S5, S6 online). Besides, the Cu-Trz MOF has excellent chemical stability and recycling ability (Fig. 2d and Figs. S23–S25 online), demonstrating that it is a new benchmark material for CO_2/C_2H_2 separation.

To further understand the molecular-sieving separation of $CO_2/$ C₂H₂ mixture in Cu-Trz MOF at the molecular level, the gas diffusion energy barriers associated with the CO₂ and C₂H₂ transport via the narrow aperture were calculated by first-principle density functional theory (DFT). The corresponding configurations of CO₂ and C₂H₂ gas molecules diffusion along the minimum energy pathways (MEP) in Cu-Trz (Fig. 2e and Figs. S26, S27 online) clearly demonstrate how CO₂ and C₂H₂ molecules diffuse in the narrow channel via the twisted pore aperture. The calculated MEP profiles (Fig. 2f) show that the CO_2 molecule can migrate through the twisted pore aperture of Cu-Trz with an energy barrier of 34.8 kJ mol $^{-1}$. In sharp comparison, the diffusion energy barrier for C₂H₂ increases dramatically to 117.1 kJ mol⁻¹, implying it is kinetically forbidden for C₂H₂ molecule to transport via the narrow aperture of Cu-Trz [15]. This suggests an ideal molecular-sieving effect of Cu-Trz, which is in line with the excellent separation effi-

H. Zhu et al.

ciency of CO_2/C_2H_2 observed in the experiment. The DFT calculated configuration shows that CO_2 molecule in Cu-Trz MOF primarily located at open metal sites of Cu_3O cluster (Fig. 2g), in which the Cu–O distances between Cu site and CO_2 are 3.202 and 3.113 Å and the distance between C atom in CO_2 and μ_3 -O of the Cu₃O cluster is 3.136 Å. This indicates that the linear CO_2 molecule can form multiple-point interactions with the plane Cu₃O cluster. The independent gradient mode (IGM) analysis between CO_2 molecule and Cu-Trz MOF framework further confirmed that the CO_2 molecule can interact with the skeleton by vdW type interaction (green isosurface in Fig. 2h). Besides, the host–guest interactions mainly are derived from the contributions of the plane Cu₃O cluster in the MOF framework. Interestingly, the central C atom of CO_2 makes a large contribution to the host–guest interactions (red atom) while the two O atoms of CO_2 render moderate contributions.

In summary, we proposed a 3D restricting molecular-sieving strategy by constructing twisted pore aperture in MOF for molecular-sieving separation of CO_2/C_2H_2 , although it was considered impractical by traditional 2D restricting molecular-sieving mechanism due to their very similar cross-sectional areas. Owning to the 3D restricting effect induced by the twisted pore aperture structure, Cu-Trz MOF shows efficient CO_2 adsorption and size exclusion for C_2H_2 adsorption, achieving ideal molecular-sieving CO_2/C_2H_2 separation. The DFT calculation reveals the molecularsieving mechanism that C_2H_2 with longer molecular size undergoes strong 3D restriction in the twisted pore aperture easily. In addition, the Cu-Trz MOF has excellent chemical stability and recycling ability, as well as low cost, demonstrating that it is a new benchmark material for CO_2/C_2H_2 separation.

Conflict of interest

The authors declare that they have no known conflict of interest.

Acknowledgments

This work was supported by the National Key R&D Program of China (2021YFB3802200) and the National Natural Science Foundation of China (22038010, 22141001, and 21978212).

Author contributions

Hejin Zhu, Hongliang Huang, and Chongli Zhong conceived the idea and designed the experiments. Hejin Zhu, Mingze Zheng, and Zefeng Jiang fabricated the materials and conducted the characterizations. Wenjuan Xue and Hongliang Huang conducted the DFT calculations and analyzed the separation mechanism. Hejin Zhu, Hongliang Huang, and Chongli Zhong analyzed the data and wrote the paper together.

Appendix A. Supplementary materials

Supplementary materials to this short communication can be found online at https://doi.org/10.1016/j.scib.2023.09.008.

References

- Chen KJ, Scott HS, Madden DG, et al. Benchmark C₂H₂/CO₂ and CO₂/C₂H₂ separation by two closely related hybrid ultramicroporous materials. Chem 2016;1:753–63.
- [2] Lin R-B, Li L, Wu H, et al. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material. J Am Chem Soc 2017;139:8022–8.
- [3] Fu D, Xu Y, Zhao M, et al. Enhancement of gas-framework interaction in a metal-organic framework by cavity modification. Sci Bull 2016;61:1255–9.
- [4] Li J-R, Yu J, Lu W, et al. Porous materials with pre-designed single-molecule traps for CO₂ selective adsorption. Nat Commun 2014;4:1538.

- [5] Wang J, Zhang Y, Zhang P, et al. Optimizing pore space for flexible-robust metal-organic framework to boost trace acetylene removal. J Am Chem Soc 2020;142:9744–51.
- [6] Shi Z, Li X, Yao X, et al. MOF adsorbents capture CO₂ on an industrial scale. Sci Bull 2022;67:885–7.
- [7] Liang B, Zhang X, Xie Y, et al. An ultramicroporous metal-organic framework for high sieving separation of propylene from propane. J Am Chem Soc 2020;142:17795–801.
- [8] Luo TY, Liu C, Gan XY, et al. Multivariate stratified metal-organic frameworks: diversification using domain building blocks. J Am Chem Soc 2019;141:2161–8.
- [9] Li T, Kozlowski M-T, Doud E-A, et al. Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. J Am Chem Soc 2013;135:11688–91.
- [10] Wang GD, Krishna R, Li YZ, et al. Boosting ethane/ethylene separation by MOFs through the amino-functionalization of pores. Angew Chem Int Edit 2022;6110.1002/anie.202213015.
- [11] Geng S, Lin E, Li X, et al. Scalable room-temperature synthesis of highly robust ethane-selective metal-organic frameworks for efficient ethylene purification. J Am Chem Soc 2021;143:8654–60.
- [12] Ouellette W, Yu MH, O'Connor CJ, et al. Hydrothermal chemistry of the coppertriazolate system: a microporous metal–organic framework constructed from magnetic { $Cu_3(\mu_3-OH)$ (triazolate)₃)²⁺ building blocks, and related materials. Angew Chem Int Edit 2006;45:3497–500.
- [13] Ouellette W, Prosvirin AV, Valeich J, et al. Hydrothermal synthesis, structural chemistry, and magnetic properties of materials of the MII/triazolate/anion family, Where MII = Mn, Fe, and Ni. Inorg Chem 2017;46:9067–908.
- [14] Cho HS, Lee Y, Wu J, et al. Understanding adsorption behavior of periodic mesoporous organosilica having a heterogeneous chemical environment: selective coverage and interpenetration of adsorbates inside the channel wall. J Phys Chem C 2019;123:24884–9.
- [15] Wang L, Xue W, Zhu H, et al. Stepwise engineering of a cage-like MOF pore aperture for the efficient separation of isomeric C4 paraffins under humid conditions. Angew Chem Int Edit 2023;62:e202218596.

Hejin Zhu received his Ph.D. degree at Tiangong University in 2023 under the supervision of Prof. Chongli Zhong. His research interest focuses on the gas adsorption and separation of MOFs.

Wenjuan Xue received her Ph.D. degree at Tiangong University in 2022 under the supervision of Prof. Donghai Mei. She joined the School of Chemistry and Chemical Engineering, Tiangong University in 2022. Her research interest focuses on the calculational chemistry of porous materials for adsorption separation and heterogeneous catalysis.

Hongliang Huang received his Ph.D. degree at Beijing University of Chemical Technology in 2014 under the supervision of Prof. Chongli Zhong. He joined Tiangong University in 2017. His research interest focuses on adsorption separation and heterogeneous catalysis of MOFs and COFs.

ARTICLE IN PRESS

H. Zhu et al.

Chongli Zhong received his Ph.D. degree at Beijing University of Chemical Technology in 1993 under the supervision of Prof. Wenchuan Wang. He worked as an assistant professor at Hiroshima University (1995–1998) and joined the group of Prof. J. de Swaan Arons at the Delft University of Technology as a postdoctoral research fellow in 1998. He joined the Beijing University of Chemical Technology and was appointed to professor in 1999. He joined Tiangong University in 2018. His main research interest focuses on the computational and experimental study of adsorption and membrane separation using nanoporous materials such as MOFs and COFs.